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Steam Plant (see Table III).

Figure 15: Renormalized-range analysis of twelve-hour averaged KrOO
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(1991).
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1. INTRODUCTION a

The scales and structure of turbulent atmospheric motions
differ considerably from those of theoretically idealized turbulent

flows, such as stationary, homogeneous turbulence, or unbounded

shear flows, and from their laboratory simulations. Atmospheric
turbulent motions consist of large, essentially two-dimensional,

random eddy motions with scales of several hundred kilometers or
more superimposed on a field of smaller eddies that become more

three-dimensional the smaller their scale. The former cascade eddy
enstrophy (mean-squared vorticity) from the very large (several

thousands of kilometers) scale of eddy-energy generation to scales

of a few hundred kilometers, and the latter cascade eddy energy to
the dissipative scale (< 1 cm). The effects of these quite

different kinds of eddy motions can be seen in the atmospheric

diffusion of natural and anthropogenic effluent clouds released
into the atmosphere. Small-scale, three-dimensional eddies rapidly
spread and dilute effluent clouds; large-scale, two-dimensional

eddies rapidly distort them (Gifford 1985, 1989).
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It was proposed (Gifford 1982. 1984) that the boundary between

these two scales of atmospheric turbulent motions is measured by
the Lagrangian integral time-scale of the turbulence, and it was

shown that this scale is essentially equal to the reciprocal of the
Coriolis parameter, equal to about 3 hours in mid-latitudes. Eddies

having larger time-scales distort diffusing clouds; eddies having

smaller time-scales are responsible for the diffusive cloud

spreading. The boundary is of course broad. not sharp. The

essential correctness of this proposition is attested to by a

variety of observations of large atmospheric clouds and plumes

(Barr and Gifford 1987, Gifford, 1983).

A previous study was undertaken (Gifford 1991) in an attempt

to apply a method of fractal geometry to a long series of 12-hourly

averaged Kram concentrations measured at 5 points extending

downwind from the Savannah River plant at Aiken, SC, the most

distant being Murray Hill, NJ, about 1100km from the source. By

calculating the so-called Hurst exponent, H. for these data time-

series, it was possible to estimate the fractal dimension of

atmospheric motions at these large scales. The previous report

provides a brief survey of the basic fractal-geometry concepts

involved in this analysis as well as pertinent literature

citations. The present study attempts to extend the large-scale

results to smaller-scale, atmospheric boundary-layer turbulence by

analyzing a variety of sets of smaller-scale atmospheric diffusion

data.

2. FRACTAL DIMENSION AND THE HURST EXPONENT

An object's fractal dimension has been called a measure of its

irregularity (Ludwig, 1989). The Euclidean dimensionion of a circle

or other plane figure is. for example, two; but many planar

objects, especially in nature, are not very well characterized by

their Euclidean dimension, for instance the radar plot of a

precipitation band. Mandelbrot (1982) devised fractal geometry to

deal with this kind of problem, and it has proved to be a very

useful concept. The central property of a fractal object is that.
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if it is viewed over a range of resolutions (scales). its shape is

observed to possess the property of self-similarity. The degree of

its irregularity is measured by the fractal dimension involved. The
fractal dimension of the perimeter of a radar image of a cloud

or rain band has. for example, been found to equal 1.35 (and of its

area, 2.35) to linear scales up to several hundred kilometers

(Lovejoy, 1982).

Lona time series of pollutant concentrations measured downwind
from a source contain information on the structure of turbulence in

the two- and three-dimensional cascade ranges of atmospheric

turbulence and so can be expected to be related to the fractal

dimension of atmospheric flows in these ranges. For a

concentration-time series C(t) to be self-similar, changes in

concentration at a given point must depend on time in such a way

that, statisticaly speaking, for any two times t , and t=,

C(tm) - C(t%) a (t2 - t1)" (i)

where H is the similarity constant, called the Hurst exponent. H is

related to the fractal dimension. D. by

D - 2 - H (2)

Results from the previous study (Gifford 1991) of the ACURATE data
showed that the Hurst exponent for regional-scale atmospheric
turbulence lies in the range H-0.35 to 0.45, and there was some
indication of slightly higher values, to H-.48, at the largest
scales (about 1000 km) measured by these data. The remainder of the
present report describes the results of a study of Hurst exponents
derived from smaller-scale atmospheric concentration measurements.

3. SMALL-SCALE DIFFUSION DATA
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Atmospheric concentration measurements were obtained from the

following sources: 1) Hourly SO2 concentration measurements made at

monitoring stations in the vicinity of the TVA's Cumberland, TN.

Steam Plant for the year 1987 (Gautney. 1989); 2) Ten-second

averages of NO concentrations measured over 3- to 4-hour periods in

the vicinity of two elevated sources in Australia by the CSIRO Div.

of Coal and Energy Technology in 1989 (Carras, 1993); 3) Six-second

averages of SF. concentrations obtained at distances of from 25 to

100 m downwind from a source at a CSIRO field site in Australia.

described by Sawford (1987) and previously analyzed by him and by

Hanna and Insley (1989): 4) Six series of 0.1-second averages of

SFdb concentrations measured over 10-minute periods at various

distances up to 700 m downwind from a ground-level source at a

flat, desert site in southwestern Washington (Peterson, 1989). 5)

Two runs from a group of wind-tunnel plume measurements of ethane

concentrations at two distances from the source, made at 1/2-second

intervals for 300 second periods (Lawson 1993). Relevant

information about all these concentration data sources is

summarized in TABLE I.

TABLE Z

SOURCES OF SHORT-TERM AVERAGED
CONCENTRATION-TIME SERIES

NOAA/ARL WIND
TVA87 CSIR089 CSIRO85 Wash.State U. TUNNEL DATA

Source
Type : Stack Stack Surface Surface Elevated
Receptor
Distance: 2-11km 5-10km 25-100m 160-700m u 1-3 m
Duration
of Runs: 1 yr 3-4 hr 1 hr 10 min 300 s
Averag-
ing time: 1 hr 10 sec 6 sec 0.1 sec .5 s
No. Runs
Analyzed: 17 4 7 4 2

About half the total available atmospheric data were
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analyzed in this study. Runs were omitted if they contained
significant periods of missing data, or if they were too short.
Runs were selected for analysis to bring out possible trends in the
results, such as seasonal variability (TVA data), or boundary-layer
stability effects (Washington State U. data). Figures 1-4
illustrate typical concentration-time series from these four
atmospheric data sets and bring out some interesting points. Fig. 1
is based on hourly averages of SO= concentrations during the period

January through March from Station 7. about 8 km SSW of TVA's
Cumberland Steam Plant. It shows the same noisy background,
punctuated by brief concentration spikes. as for instance the
Murray Hill data. Fig. 5 from the previous study (Gifford 1991) of
the 12-hour averaged ACURATE data. Figs. 3 and 4. whose data
averaging times are very short, have overall much more consistently
noisy concentration-time traces and, interestingly, more resemble
the NOAA/ARL wind-tunnel data, an example of which is shown in Fig.
6. The object of the present study is to see what further,
quantitative structural information can be gleaned f-om these
noisy, seemingly random concentration-time series.

4. RENORMALIZED RANGE ANALYSIS

The "renormalized-range" statistic (Mandelbrot 1982) is given,
from Eq. 1. by

R(TIS(i) - [(C... (T) - C.,*i(T)]/F=(T) - b'r , (3)

where R is the range of C , and S (*a.) is its standard deviation,

during the time period T - ti - to , b is a constant, and the time
interval T is measured from the beginning of the series. If
atmospheric turbulent motions are self-similar, a logarithmic plot
of R/S and T should from Eq. 3 contain broad linear ranges with
slopes equal to H, the Hurst exponent. Moreover in general D - E+1-

H (Mandelbrot 1982) and so the fractal dimension, D, is also
determined by this procedure.

The concept of similarity regions of the atmospheric energy
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spectrum is quite familiar, so it is not surprising to find that
the similarity exponent H is also related to the slope 1/fo

of the spectrum in the similarity range, f being frequency. It

follows that for time series

D - E + 1 - H - E + (3-6)12 (4)

according to Mandelbrot (1982). From this the values of H, D, and 0
for time series of concentrations (for which E - 1) can be

summarized as in TABLE II, from Gifford (1991).

TABLE II

THEORETICAL VALUES OF THE HURST EXPONENT, H, SPECTRAL SLOPE, B, AND
FRACTAL DIMENSION. D. FOR TIME SERIES

Power Law: Extreme: Kolmogoroff: Brownian: Extreme
Parameter: Value : Turbulence Motion : Value.

H : 0 1/3 1/2 1
B : 1 : 5/3 : 2 : 3
D 2 5/3 3/2 : 1

Table II shows how the renormalized-range analysis of concentration
time-series can provide useful information on atmospheric

turbulence structure that is directly related to more familiar
structural concepts, such as the shape of the energy spectrum of

the flow.

Lagrangian trajectory models commonly assume that the
stochastic element in air- parcel motions is described by ordinary

Brownian motion, which corresponds to a Hurst exponent of H - 1/2.
Similarly, Eulerian grid models use what amounts to the same
assumption to characterize sub-grid scale motions. The R/S analysis

can provide a check on this assumption. Moreover methods have been
devised (see e.g. Feder, 1988, Turcotte, 1989 for instance) by

means of which actual values of H might be introduced into

atmospheric models.
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5. HOURLY-AVERAGED CONCENTRATION DATA

The SO= monitoring stations around the TVA Cumberland Steam

Plant are located as shown in TABLE III. Figures 7 through 14

TABLE III

CUJMBERLAND (TVA) STEAM PLANT SO2 MONITORING STATIONS

Station Number Source Distance Direction
7 8.1 km SSW

10 7.4 km SE
18 10.6 km NE
23 2.7 km SW
24 6.4 km WSW

illustrate the results of renormalized-range, R/S analysis of

Cumberland data based on Eq. 3. Figs. 7 through 10 are based on

January through March data, and Figs. 11 through 14 are for April

through June data. These R/S curves are based on data series of 600

to 1000 values. Gaps in the records prevented use of other data

periods for R/S analysis.

The Cumberland hourly data are seen to yield R/S-curves that

are qualitatively similar to those based on the 12-hour averaged

KrO' concentration data analyzed earlier (Gifford 1991). Figure 15

from ttat report, the R/S analysis of the Tarboro, NC. data, is

representative of the ACURATE results. Periods of steady rise of

the R/S-values, with slope-values indicating H-exponents around

0.40, are punctuated by sharp breaks, presumably caused by

"pluming" (direct passage of the plume over the station), or other

major shifts in the driving meteorological conditions. The main

qualitative difference is the time-scale of the events. There is

some indication that the 12-hour averaged ACURATE data have

slightly higher H-values (.4-.5) than the 1-hour averaged TVA data

(.35 to .4).
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6. SHORT-PERIOD AVERAGED CONCENTRATION DATA

Figures 16 through 33 contain the R/S-analyses that have been

performed on short-term time-averaged atmospheric concentration

deta from the two CSIRO sets and the Washington State U. data, and

two examples from the NOAA/ARL wind-tunnel plume data. Slopes, that

is values of Hurst exponents H, indicated by the dashed lines of

best fit in all these Figures are summarized in Table IV.
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TABLE IV

SUMMARY OF FRACTAL VALUES FROM CONCENTRATION-
TIME SERIES USING (EQ.3)

Station Series Length b H D
(JFM 1987 TVA Cumberland Steam Plant)

07 827 1.45 .34 1.66
10 606 0.81 .45 1.55
18 1646 1.12 .33 1.67
24 852 1.08 .40 1.60

(Avg. - 1.12 .38 1.62)
(AMJ 1987 TVA Cumberland Steam Plant)

10 637 1.04 .44 1.56
18 701 2.07 .25 1.75
23 702 1.00 .40 1.60
24 702 0.74 .45 1.55

(Avg. - 1.21 .38 1.62)
(CSIRO 1985)
1 580 2.44 .12 1.88
3 590 1.97 .17 1.83

14 595 2.97 .06 1.94
19 646 2.76 .10 1.90
26 597 2.24 .12 1.88
39 562 1.90 .15 1.85
41 235 1.57 .26 1.74

(Avg. - 2.76 .14 1.86)
(CSIRO 1989)

B 1310 1.90 .14 1.86
C 1316 1.14 .26 1.74
D 1120 2.12 .14 1.86
E 1157 1.32 .22 1.78

(Avg. - 1.62 .19 1.81)
(Washington State U., Desert Study. 1987)
4 2999 1.88 .14 1.86

25 3000 2.03 .11 1.89
27 2996 4.18 -. 03 -
34 2999 3.16 .05 1.95
40 1836 1.97 .12 1.88

(Avg. - 2.64 .08 1.92)
(NOAA/EPA Wind Tunnel Plume Study, 1991)

35 3498 1.16 .28 1.72
36 569 1.23 .24 1.76

Table IV, and the Figures it accompanies, are the principal results

of this renormalized-range analysis.
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7. DISCUSSION

Taken together with the previous (Gifford 1991) H-values

based on 12-hour average concentration data. Table IV shows that

concentration-time series characteristic of typical small-scale,

surface boundary-layer turbulence are measured by Hurst exponents

in the range .1 to .2. For the larger scale of boundary-layer

turbulence events measured by the hourly-averaged TVA data, H

values of about .35 to .4 are calculated by the R/S technique. Such

values are, according to Table II, typical of locally homogeneous

turbulence (Kolmogoroff turbulence). Hentschel and Procaccia (1983)

present an interesting theoretical discussion of this kind of

curbulence based on considerations of fractal geometry and conclude

that H is close to .35 for this type. At turbulence scales large

enough to affect the 12-hour averaged concentration values of the

ACURATE data, yet larger H-values are found. in the range .4 to

.45, particularly at scales of from several days to weeks. Random

turbulence at these larger scales is two dimensional; it deforms,

rather than diffuses pollutant clouds.

No seasonal difference was detected in the Cumberland R/S

analyses for the two quarterly data periods that could be examined

(late winter and early spring). As to variation with stability

conditions, the short-range data from Washington State U. covered

a range of conventional boundary layer stability categories as

follows: run 4, quite unstable, type A; runs 25 and 27, stable,

type E; run 34, very stable, type G; run 40, near neutral, type D.

The Table IV results suggest that the stable runs are associated
with somewhat smaller H-exponents than unstable and neutral runs.

8. CONCLUSIONS

There seems little doubt, based on the above renormalized-

range analysis of a large amount of concentration time-series data

gathered over a wide range of plume-diffusion scales, that the
characteristic fractal dimension of diffusing plumes from sources

in the boundary layer increases with diffusion time ("plume-age",
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or downwind evolution of the diffusing cloud). The characteristic

Hurst-exponent H equals about .3 t.1 in the boundary layer. This

controls the near-field of diffusion, to distances on the order of

a few tens of kilometers downwind, the range of rapid cloud

spreading in the 3-D, energy-cascade region of atmospheric

turbulence. As a diffusing cloud spreads to larger scales, to

distances of several hundreds of kilometers. it continues to be

diffused by these smaller-scale eddies but becomes more and more

rapidly deformed by the larger, 2-D, enstrophy-cascading eddies.

The characteristic Hurst-exponent of these large-scale, 2-D

turbulent atmospheric motions seems to be in the range H-.4-.5,

approaching that of Brownian motion (white noise). The difference

between such white-noise turbulence and the "red-noise" turbulence

characterized by H-.2 or .3, which according to Table IV is

characteristic of near-field boundary-layer diffusion, can be

considerable (Gifford 1991. Fig. 7). Adjustment of stochastic

elements in atmospheric turbulence and diffusion models to account

for this difference from the standard modeling assumption, in

effect that H - 1/2. should be considered seriously.
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